Forcing Minimal Degree of Constructibility

نویسندگان

  • Haim Judah
  • Saharon Shelah
چکیده

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Souslin Trees and Degrees of Constructibility

This thesis investigates possible initial segments of the degrees of constructibility. Specifically, we completely characterize the structure of degrees in generic extensions of the constructible universe L via forcing with Souslin trees. Then we use this characterization to realize any constructible dual algebraic lattice as a possible initial segment of the degrees of constructibility. In a s...

متن کامل

A Complete Boolean Algebra That Has No Proper Atomless Complete Sublagebra

There exists a complete atomless Boolean algebra that has no proper atomless complete subalgebra. An atomless complete Boolean algebra B is simple [5] if it has no atomless complete subalgebra A such that A 6= B. The question whether such an algebra B exists was first raised in [8] where it was proved that B has no proper atomless complete subalgebra if and only if B is rigid andminimal. For mo...

متن کامل

A Minimal Model for ^ch: Iteration of Jensens Reals

A model of ZFC + 2s" = S2 is constructed which is minimal with respect to being a model of -,CH. Any strictly included submodel of ZF (which contains all the ordinals) satisfies CH. In this model the degrees of constructibility have order type o>2. A novel method of using the diamond is applied here to construct a countable-support iteration of Jensen's reals: In defining the ath stage of the i...

متن کامل

Hinges and Automorphisms of the Degrees of Non-constructibility

The main result of this paper is to show that, under weak cardinal assumptions, there is no non-trivial automorphism of the degrees of non-constructibility. To achieve this we introduce the notion of a hinge. The degrees of non-constructibility, or c-degrees, are the factor classes of the reals (in some cases we shall consider larger sets of ordinals) under the following equivalence relation: a...

متن کامل

Combinatorics on Ideals and Forcing

A natural generalization of Cohen's set of forcing conditions (the t w ~ valued functions with domain a finite subset of w) is the set of twovalued functions with domain an element of an ideal J on ~. The I~roblem treated in this paper is to determine when such forcing yields a generic real of minimal degree of constructibility. A :;imple decomposition argument shows that the non-maximality of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 1991